Heart-On-A-Chip Tests Drugs' Cardiotoxicity With Its Real Heartbeat

Heart disease is the leading cause of death among Americans. Recently the bio-tech industry has been exploding with cardiac research like last week's heart attack preventing nanobots. New research by the team at the University of California, Berkley has created working human heart cells on a tiny chip designed to test the efficacy of new drugs in clinical trials. This heart-on-a-chip is officially known as a cardiac microphysiological system, or MPS. Using this heart-on-a-chip, scientists can measure the potential cardiac damage of a drug before it reaches expensive human trials.

Advertisement

Drug trials can take years, and to mitigate risk these drugs undergo testing in non-human subjects. Animals are often used in place of humans, but animal models can be problematic. Specifically, they are less effective at predicting cardiotoxicity, wherein a drug damages the heart. This is important because one-third of drugs withdrawn from testing are pulled due to cardiotoxic effects.

Drugs that are first tested in animal models can succeed to future testing stages without setting off alarms. After successful early stages more time and money is invested and the drugs progress to human trials, only to be stopped in their tracks because they are found to be toxic to human hearts.

The cells on this tiny MPS chip are human heart cells that were created from pluripotent stem cells. These cells react to drugs the same way as a human heart inside a living person. By creating a portable, low-risk, and accurate drug testing environment, scientists may be able to advance clinical trials of new drugs and bring them to market sooner.

Advertisement

Here is a video by the UC Berkley research team of their heart cells actually beating.

Source: Berkeley

Recommended

Advertisement